

2

Meet Ciklum
We empower companies to meet their digital initiatives by
providing end-to-end software, integration and innovation services

2002 Founded

Established

3,500+ Engineers

At Scale

300+ Clients

Trusted

24 Offices

Global Presence

Our services

Leading companies choose us:

Digital
Commerce

ITO & Managed
Service

Intelligent
Automation

Engineering
Services

Data &
Analytics Cloud

3

● 8+ years of professional experience, working both as
a .NET developer and a QA Automation engineer

● 3+ years with Ciklum

● Regular speaker in knowledge sharing events and
conferences, focused mainly on teaching best
practices in .NET test automation

Speaker:

Vladyslav Babych
.NET Automation Tech Lead at Ciklum

4

01
02
03

Why BDD?

Agenda

Best Practices in Specflow

More advanced concepts in Specflow

Why BDD?

01

6

● Framework for improved collaboration between
developers & stakeholders

● Living Documentation

● Integrates well with Agile framework

● User-centric development approach

● It’s not just about testing

What is the point of BDD?

7

Example of BDD test in
Gherkin syntax

Given the user is on the "Reset Password" page.

When the user enters their registered email address and confirms.

Then a confirmation message should be displayed stating "A
password reset link has been sent to your email."

8

When BDD doesn’t make
much sense

● Simple or short-lived projects

● Lack of stakeholders involvement into development process

● Lack of clear requirements (usually in small or startup
projects)

● Late phase of the project when introducing BDD would
cause too much overhead to the existing process

9

Not a valid reason to dismiss
BDD!

Test automation engineers complaining that BDD is
hard to maintain or is a “pointless trend” is not a
valid reason to dismiss BDD!

Most of the time it’s either prejudice, laziness or
resistance to change, and such reaction is
unfortunately very common.

10

Specflow

Specflow is a leading BDD-Framework for .NET ecosystem.
It’s completely free and open source

Integrates seamlessly with popular unit testing frameworks in .NET (NUnit,
xUnit, MSTest)

Also provides its own test runner as alternative (SpecFlow+ Runner)

Maps Gherkin Given/When/Then steps into step definition methods in C#.

11

Step Definition Example

Specflow Step

When the user logs in using ‘GoogleAuth’

Step Definition

[When(@"the user logs in using '(.*)'")]
public void WhenTheUserLogsInUsingGoogleAuth(LoginMethod loginMethod)
{
 this.loginStepsDriver.Login(loginMethod);
}

Best practices
in SpecFlow
02

13

Use third-person view
to describe scenarios

Scenario: Successful password reset by user

Given I am on "Reset Password" page
When I provide a valid registered email address
Then I see a confirmation message stating "A password
reset link has been sent to your email."

14

Use third-person view
to describe scenarios

Scenario: Successful password reset by user

Given the user is on "Reset Password" page
When the user provides a valid registered email address
Then the user sees a confirmation message stating "A password
reset link has been sent to your email."

15

Don’t use Imperative syntax (too
technical & too much detail)

Scenario: Successful password reset by user

Given the user is logged in
When the user clicks on “Profile” button
And the user clicks “Reset password” button
And the user inputs email address “someuser@gmail.com”
And the user clicks “Confirm” button
Then popup “A password reset link has been sent to your
email.” appears

16

Prefer Declarative syntax
(business language)

Scenario: Successful password reset by user

Given the user is logged in
When the user is navigated to "Reset Password" page
And the user enters provides registered email address
and confirms
Then password reset confirmation window is displayed

17

Aim for reusability by using
parameterized steps
Scenario: Successful checkout with credit card
Given the user is logged in using “GoogleAuth"
When the user navigates to products page
And the user adds "Sony TV" product to cart
And user checks out with “credit card" payment
Then the user receives order confirmation via email

Scenario: Successful checkout with loyalty points payment
Given the user is logged in using "AppleID”
When the user navigates to products page
And the user adds "Samsung TV" product to cart
And user checks out with "loyalty points" payment
Then the user receives order confirmation via email

18

Even better approach – Scenario
Outline

Scenario Outline: Successful checkout
Given the user is logged in using <authenticationMethod>
authentication method
When the user navigates to products page
And the user adds <product> product to cart
And user checks out using <paymentType> payment method
Then the user receives order confirmation via email

Examples:
authenticationMethod	product	paymentType
AppleID	Samsung TV	loyalty points
GoogleAuth	Sony TV	credit card

19

Never chain scenarios together

Each scenario should be independently executable from
other scenarios

If you need to do common setup/cleanup, use hooks
(will be covered in next chapter)

20

Never chain scenarios together

Scenario: 1 Create Order
Given the user is logged in
When the user navigates to products page
And the user adds "Sony TV" product to cart
And user checks out with “credit card" payment
Then the user receives order confirmation via email

Scenario: 2 Cancel Order
Given the user is logged in
When the user navigates to orders page
And the user selects "Sony TV" order
And user cancels the order
Then the user receives order cancellation via email

21

Never chain scenarios together

@SetupOrder
Scenario: Cancel Order
 Given the user is logged in
 When the user navigates to orders page
 And the user selects "Sony TV" order
 And user cancels the order
 Then the user receives order cancellation via email

22

More tips to properly isolate
your scenarios

Try not to reuse existing entities (e.g. products), always
create unique set of data for each test if possible

If tests rely on specific app configuration, inject it at
runtime or before whole test run

Clean up your data (databases, left over files etc.)

23

Properly isolated Specflow test e.g.
@BeforeScenario

Username = CreateRandomString() + “_automation_user@gmail.com”
Product = CreateRandomString() + “headphones”

@SetupUser(Username).WithLoyaltyPointsBalance('100')
@SetupProduct('Sony MDR 750 headphones').WithPrice(‘100’)
@EnableLoyaltyPointsPayment

Scenario: After login, user navigates to shopping cart, adds a product and checks out an order.

Given user 'Username' is logged in
When user adds product 'Product' to the cart
And user checks out and pays with '100' loyalty points
Then checkout is successful
And total price of an order is '100$'
And user order list has 1 order with title 'Product'

@AfterScenario

@CleanupUser(Username)
@CleanupProduct(Product)
@DisableLoyaltyPointsPayment

Advanced
Specflow
Concepts

03

25

Hooks

Should be used to perform additional automation logic at specific times, such as
any setup/cleanup required prior to executing a scenario. Available scopes:

[BeforeTestRun]/[AfterTestRun]

[BeforeFeature]/[AfterFeature]

[BeforeScenario]/[AfterScenario]

[BeforeStep]/[AfterStep]

26

Hooks (Example)

On test failure, get event logs and messages from db and output in test result

[AfterStep]
public void WrapTestFailure(ScenarioContext scenarioContext, DatabaseContext context)
{
 Exception exception = scenarioContext.TestError;
 if(exception == null)
 return;
 List<Guid> correlationIds = GetCorrelationIdEntries(scenarioContext);

 throw new Exception(
 $"Test failure: Original Exception: {exception.GetType()} {exception.Message}\n
Event logs and messages for id: {correlationId}:
{Utils.GetAllExecutionMessagesAndEventLogs(correlationIds, context)}");
}

27

Scenario/Feature Context

A mechanism to share data between steps in a single scenario. Facilitates cleaner,
more modular step definitions by eliminating the need for global/shared variables.

Key Properties of Scenario Context:

- ScenarioContext.Current: Access the current running scenario.

- ScnearioContext.ScenarioInfo: Retrieve details like title, tags, or description.

- Add & TryGetValue: Store and retrieve data.

28

Best practices for Scenario Context

● Only use scenario context in step definition classes, don’t
propagate it deeper. Only specflow binding classes should “know
about it”

● Scenario Context has limitations and is best used for sharing simple
data/variables

● If you need to share complex data/objects between steps, it’s
better to create a custom object and inject it with DI/Repository
pattern

29

Step Argument Transformations

● Allows text in steps to be converted into complex types or
perform custom transformations on argument values.

● Simplifies step definitions by handling repetitive parsing logic.

● Usage: Apply [StepArgumentTransformation] attribute to a
method that converts a string or table to a desired type.

30

Example of Step Argument
Transformation
Specflow Step:

Given the user details:
 | Name | Age | Email |
 | Alice | 28 | alice@example.com |

Step argument transformation:

[StepArgumentTransformation]
public User TransformTableToUser(Table table)
{
 return table.CreateInstance<User>();
}

Usage:

[Given(@"the user details are:")]
public void GivenTheUserDetailsAre(User user)
{
 // Now, you directly work with the ‘User’
object
}

31

Handling Relative Dates in Specflow

Use StepArgumentTransformations for that

Avoid mathematical operations (e.g. “Today - 1 day”)

Define date periods according to your business
requirements (e.g. Today, Yesterday, MonthAgo)

32

Handling Relative Dates in Specflow

When the order was completed 'after return policy period expired'
Then the order is not eligible for return policy

Specflow Step

Step argument transformation

[StepArgumentTransformation("After return policy period expired")]
public DateTime TransformToDayMoreThanTwoWeeksAgo()
{
 // current return policy is 14 days, can be adjusted if requirements change
 return DateTime.Today.AddDays(-14);
}

Usage

[When(@"the order was completed '(.*)'")]
public void WhenTheOrderWasCompleted(DateTime date)
{
 // your logic
}

33

Use Driver pattern for your steps

● Provides an additional layer between step definitions
and automation code

● Keeps steps short and easy to read/understand

● Can easily combine with Strategy pattern to allow
different behaviors of the same steps during runtime

● Allows to reuse the same driver methods across multiple
step definitions or even different scenarios

https://docs.specflow.org/pr
ojects/specflow/en/latest/G
uides/DriverPattern.html

https://docs.specflow.org/projects/specflow/en/latest/Guides/DriverPattern.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/DriverPattern.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/DriverPattern.html

34

Driver Pattern Example
(with a sprinkle of Strategy pattern)

Use case:
User can log into your application using several methods, e.g. AppleID, GoogleAuth
etc. We need to test login logic

In order to implement driver pattern properly, we first need to create a common login
interface:

public interface ILoginDriver
{
 public void Login();
}

35

Driver Pattern Example
(with a sprinkle of Strategy pattern)

public class GoogleAuthDriver : ILoginDriver
{
 public void Login()
 {
 // login using google auth, you could get login info such as email from ScenarioContext
or just pass it as variables
 }
}

public class AppleIdAuthDriver : ILoginDriver
{
 public void Login()
 {
 // login using apple id, you could get login info such as email from ScenarioContext or
just pass it as variables
 }
}

Then we create implementations for both supported login methods (strategy)

36

Driver Pattern Example
(with a sprinkle of Strategy pattern)

Then we can create a simple Factory class which will return correct driver to us
depending on login method:

public class LoginDriverSimpleFactory
{
 public ILoginDriver GetLoginDriver(LoginMethod loginMethod)
 {
 switch (loginMethod)
 {
 case LoginMethod.GoogleAuth:
 return new GoogleAuthDriver();
 case LoginMethod.AppleId:
 return new AppleIdAuthDriver();
 }
 }
}

37

Driver Pattern Example
(with a sprinkle of Strategy pattern)

public class LoginStepDriver
{
 public void Login(LoginMethod loginMethod)
 {
 var loginDriver = new LoginDriverSimpleFactory().GetLoginDriver(loginMethod);
 loginDriver.Login();
 }
}

And the step definition itself:

[When(@"the user logs in using '(.*)'")]
public void WhenTheUserLogsInUsingGoogleAuth(LoginMethod loginMethod)
{
 this.loginStepsDriver.Login(loginMethod);
}

And finally the actual step driver:

38

Driver Pattern Example
(with a sprinkle of Strategy pattern)

Here is how our specflow tests look like. Notice, that there is no duplication of step
definitions and steps are also reusable and flexible.

If we want to introduce a new login method in the future, we just need to create a new
driver implementation. Changes to the code are minimal, and existing specflow
tests/step definitions are untouched.

Scenario: Login using Google Authentication
When the user logs in using 'GoogleAuth'
Then login is successful

Scenario: Login using Apple Authentication
When the user logs in using 'AppleAuth'
Then login is successful

39

Specflow is not hard to maintain
if you do it right

Remember that common complaint that specflow
tests are harder to maintain than regular tests
written in code?

I would bet that in 90%+ of those cases best
practices such as driver pattern or test isolation
is not used, or people are not even aware of it.

Specflow is not the problem, it’s YOU!

Bonus Section:
Integrate Specflow
tests with
Azure Test Plans

04

41

Integrating with Azure Test Plans

If you’re working in Azure environment, it’s easy to
synchronize your Specflow tests with Azure Test Plans using
SpecSync tool.

It will seamlessly integrate with Azure Test Plans and
convert specflow steps into Azure test cases and update
their execution status after each pipeline run.

This is great for automated reporting to your stakeholders.

SpecSync tool (requires paid licence):
https://www.specsolutions.eu/specsync/

https://www.specsolutions.eu/specsync/

42

Specflow Living Docs

https://specflow.org/tools/living-doc/

LivingDocs is an extension that allows to display your
Specflow tests and their results within your browser.

It functions as a living and dynamically changing
documentation for your project.

43

Specflow Living Docs Example

Conclusion

Q&A

Vladyslav Babych
vlbab@ciklum.com
www.ciklum.com

Explore career
opportunities
at Ciklum

Thank you!

Vladyslav Babych
vlbab@ciklum.com
www.ciklum.com

