
11

2

Experiences of tomorrow. engineered
together.

We transform how people experience the business. all
through next generation technology.

2002
founded

4000+
professionals

300+
clients

offices

offices

What we do:

Leading companies choose us:

Product
Engineering

Intelligent
automation Data & analytics

Central & eastern europe

Asia

LATAM

Bulgaria

Czech Republic

Poland

Romania

Slovakia

Spain

Ukraine

United Kingdom

India

Pakistan

Argentina

Uruguay

North America

Canada

USA

Ciklum’s world

44

Meet the speaker
● Senior Embedded Software Engineer @

Ciklum Slovakia
● 12 years of professional experience
● Drone Pilot, 3D Printing Enthusiast,

Corgi owner
Adrian Panicek,
Senior Embedded Software
Engineerat Ciklum

55

6

The high cost of
software failure
● Massive operational disruptions
● Severe financial losses
● Erosion of customer trust
● Exploitable security holes

Case Study 1:
Global Paralysis
(CrowdStrike Outage, July 2024)

● Worldwide System Crashes (BSODs)
● Airlines Grounded
● Hospitals, Banks, Businesses
● Estimated Billions $ in Economic

Damage

8

Bugs and
vulnerabilities
cost us
money!

● Expensive investigation & fixing cycles

● Costly system downtime

● High incident response & recovery bills

● Brand damage & lost customer trust

9

What are bugs and vulnerabilities

● A weakness in code enabling
attacker to violate security
policy

● Might result in data leaks,
identity theft, financial
fraud…

● A flaw in code causing
incorrect or unexpected
program behavior

● Might result in data
corruption, outage or even
bodily harm

Bug Vulnerability

10

Case Study 2:
Lethal Dose
(Therac-25 Incidents, 1985-1987)

● Massive radiation overdoses delivered
● Caused by software bug
● Cancer patients killed or severely injured
● Landmark failure in software safety &

ethics

11

What caused
the issue

● Race condition in the system

● Lack of documentation

● Incoherent error reporting

● Bus factor in development

● Weak tooling

12

Don’t let
your devices
become bots

Case Study 3: Hack
With 28 Steps
(CVE-2015-8370, December 2009 - early
2016)

● GRUB bootloader password bypassed

● Triggered by pressing backspace 28
times

● Granted unauthorized GRUB rescue
shell access

14

What are CVEs
● System to document, evaluate and archive security

vulnerabilities
● We collect up to a hundred of vulnerabilities every day
● Each CVE has unique numbering
● cve.org, exploit-db.com

15

Just code better
● Common argument states it’s developer’s fault
● The best way for developer to defend is to use

better tools
● Not even the best developers are immune to

mistakes

16

Most common manual memory bugs

● Buffer overflow
● Use-after-free
● Memory leak
● NULL pointer dereference
● Double free
● Heap overflow
● Stack buffer overflow

● Integer overflow/underflow
● Dangling pointer
● Buffer over-read
● Type confusion
● Uninitialized memory

Read/Use
● Format string vulnerability
● Out-of-bounds Read/Write

What is
unsafe
memory
access?

17

int main(void) {
 const char* source = "Ciklum!";
 char* copy = malloc(7);
 memset(copy, 7, '\0');
 memcpy(copy, source, 7);
 free(copy);

 printf("%s", copy);
 return 0;
}

What is
unsafe
memory
access?

18

int main(void) {
 const char* source = "Ciklum!";
 char* copy = malloc(7); // Buffer is one byte short!
 memset(copy, 7, '\0'); // Wrong order of parameters!
 memcpy(copy, source, 7); // “source” could be
immutable but C doesn’t support it
 free(copy);

 printf("%s", copy); // Use after free
 return 0;
}

Industry is sounding alarms

19

Governments are sounding alarms

20

- The Case for Memory Safe Roadmaps, Join efforts Five Eyes (2023)

- How to Protect Against Software Memory Safety Issues, NSA (2022)

- Exploring Memory Safety in Critical Open Source Projects, CISA (2024)

“Memory management issues have
been exploited for decades and are
still entirely too common today”
- Neal Ziring, Cybersecurity Technical Director NSA

https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues
https://www.cisa.gov/resources-tools/resources/exploring-memory-safety-critical-open-source-projects

Are we
bashing C?

21

● C/C++ is the core of all major operating
systems

● C is used for most of high-performance
applications

● All garbage collected/higher level
languages run on C

● If we want to fix all languages, we need to
focus on C first

Linux can’t
code better

22

● Dirty COW (CVE-2016-5195) - Privilege escalation

● Stack clash (CVE-2017-1000364) - Memory corruption

● Baron Samedit (CVE-2021-3156) - LPE in sudo

● BleedingTooth (CVE-2020-12351, CVE-2020-12352,
CVE-2020-24490) - Set of vulnerabilities in BLE stack

● …

● Use-after-free (CVE-2017-7308 and many more!)

● Null pointer dereference (Numerous and ongoing!)

23

Even The Best Make Mistakes

Even the
best make
mistakes

24

“This is an ancient bug that was actually
attempted to be fixed once (badly) by me
11 years ago”

Linus Torvalds on DirtyCOW

The need for better tooling

25

● Many of the bugs and vulnerabilities are preventable
● Best practices
● Defensive programming
● Static analysis
● Wherever IO, multithreading or magic happens, bugs

are inevitable

26

Here comes Rust!

● Broad-level
● Cross-Platform
● Community driven
● Open source
● Built on LLVM backend

● Memory safe
● C - Level performance
● Thread safe
● Reliable

Rust timeline
Rust won multiple Stack Overflow Developer Surveys for the
most favorite language, maintaining position for several years

2006

2009 2020

2019 2021

Rust started as
a personal
project by
Graydon Hoare

Rust 1.0 was
released, marking
the language as
stable

Rust was adopted
for kernel
development in
Linux

Mozilla began
sponsoring Rust
development

Dropbox,
Cloudflare, and
Microsoft
partially
adopted Rust

28

Industry trusts Rust!

29

● Ownership model
● Immutability by default
● Option monad instead of null pointers
● Thread safe operations
● Smart pointers
● Integrated unit testing
● Integrated package management
● Strict type system

How does Rust do it?

30

Ownership model

void main() {

 const char* s1 = "hello";

 const char* s2 = s1;

 printf("%s world!", s1);

}

fn main() {

 let s1 = String::from("hello");

 let s2 = s1;

 println!("{s1}, Ciklum!");

}

31

Ownership model

error[E0382]: borrow of moved value: `s1`

 --> src/main.rs:5:15

 |

2 | let s1 = String::from("hello");

 | -- move occurs because `s1` has type `String`, which does not implement the

`Copy` trait

3 | let s2 = s1;

 | -- value moved here

4 |

5 | println!("{s1}, world!");

 | ^^^^ value borrowed here after move

32

Immutability

void main() {

 int x = 5;

 printf("The value of x is: %d", x);

 x = 6;

 printf("The value of x is: %d", x);

}

fn main() {
 let x = 5;
 println!("The value of x is: {x}");
 x = 6;
 println!("The value of x is: {x}");
}

Variables are immutable by default

33

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | - first assignment to `x`
3 | println!("The value of x is: {x}");
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable
 |
help: consider making this binding mutable
 |
2 | let mut x = 5;
 | +++

34

No NULL pointers

void main() {

 const char* s1 = "hello";

 const char* s2 = s1;

 printf("%s world!", s1);

}

enum Option<T> {

 None,

 Some(T),

}

“I call it my billion-dollar mistake…”
Tony Hoare, creator of null pointer

35

● Eliminates bug categories: Compile-time checks eradicate memory safety
errors and data races.

● Reduced downtime: Fewer runtime crashes and unexpected behaviors lead to
more reliable systems.

● Lower security risks: Prevents many common CVEs exploited via memory
unsafety, reducing incident response and patching costs.

● Enhanced productivity: Clear compiler messages, integrated tooling, and less
time spent debugging memory issues boost developer efficiency.

Safety meets savings

36

Rust is safe by default

● Buffer Overflow
● Use-After-Free
● Memory Leak
● NULL Pointer Dereference
● Double Free
● Heap Overflow
● Stack Buffer Overflow

● Integer Overflow/Underflow
● Dangling Pointer
● Buffer Over-read
● Type Confusion
● Uninitialized Memory Read/Use
● Format String Vulnerability
● Out-of-Bounds Read/Write

37

● Native speed: Compiles directly to efficient machine code, rivaling C/C++

● Zero-cost abstractions: High-level language features often compile down with no
runtime overhead

● No garbage collector: Predictable performance without GC pauses; fine-grained
control over memory

● Fearless concurrency: Build fast, parallel applications without the typical data
race nightmares

Performance without compromise

38

Broad-level?

C

Low Level High Level

C++

● Advanced data structures
● High abstraction
● Poor performance
● Easy development
● Interpreted

● Direct memory manipulation
● Low abstraction
● High performance
● Complicated development
● Compiled

Python

JavaScript

Java

C#

Rust

Assembly

39

● Plays well with others: Excellent Foreign Function Interface (FFI) allows
calling C/C++ code from Rust and vice-versa.

● Targeted rewrites: Start by rewriting performance-critical or
security-sensitive modules in existing C/C++ projects.

● New developments: Ideal for new tools, microservices, embedded systems,
and backend services.

● Gradual adoption: Teams can learn and integrate Rust at their own pace.

Integrating Rust incrementally

40

● Official support: Since Kernel 6.1 (Late 2022)

● Infrastructure maturing: Core framework, builds, basic abstractions

● First real use cases merged/In progress: The Asahi GPU, WiFi drivers and many
small components

● Cautious but steady progress: Development is active, backed by sponsors (like
Google). Rust code is still very small relative to C, but it's growing meaningfully.

Rust integration in Linux

41

● Learning curve: The ownership and borrow checker concepts require an initial
investment to understand well.

● Talent acquisition: While growing fast, the Rust talent pool is still maturing
compared to C/C++.

● Compilation times: Can sometimes be longer, though significant improvements
are ongoing.

● Ecosystem maturity: While broad, specific niche domains might have fewer
established libraries than legacy ecosystems.

Considerations on the integration

42

● Most loved/Admired language (2016-2024): As per Stack Overflow
Developer Surveys

● Great documentation: Documentation serves as primary learning point for
Rust developers as per 2024 State Of Rust Survey

● Better compensation: Rust developers make ~17% more then C developers
as per 2024 Stack Overflow Developer Survey

Rust and developers

43

● Explore: Dive into the official Rust Book
(rust-lang.org).

● Experiment: Initiate a small pilot project – a
command-line tool, a small web service, or rewrite a
troublesome module.

● Engage: Join the Rust community forums, Discord, or
local meetups.

● Educate: Invest in team training and knowledge
sharing.

● Evaluate: Seriously consider Rust for new projects
where safety, performance, and concurrency are
paramount.

Embrace the
safer future

Demo

44

https://cveroulette.com/

4646

Any questions?

47

Share your
feedback!

48

Product
Engineering
From custom platform and
product development to
scaled agile delivery, we join
forces to build advanced
technology solutions

Join our team

49

