
1

2

Experiences of tomorrow.
Engineered together.
We transform how people experience the
business. All through next generation technology.

2002
founded

4000+
professionals

300+
clients

20+
offices

What we do:

Leading companies choose us:

Product
Engineering

Intelligent
Automation

Data &
Analytics

33

Our Global Expertise, to deliver Local Impact
Ciklum combines global reach with local insights to bridge the world’s top technology talent and expertise

Asia
Product Engineering, Intelligent Automation,
Low Code, Edge Tech, Salesforce, Data & AI,
Digital Assurance, DevOps

Central & Eastern Europe
Product Engineering, Experience Engineering, Firmware Design &
Engineering, Data & AI, Intelligent Automation, Digital Assurance,
DevOps

South America
Experience Engineering, Cloud Computing,
Cybersecurity, IoT, Data Science

Bulgaria Czechia

Poland

RomaniaSlovakia

SpainUkraine

United Kingdom

India Pakistan

Canada USA
Mexico

Argentina Uruguay

Columbia

North America
Experience Engineering, Product
Engineering, Intelligent Automation,
Salesforce, Data & AI

44

Meet the speaker
● 17+ years in IT
● Hands-on Enterprise Architect
● Led big programs (150+ engineers) and

departments with 350+ engineers
● winner of Ukrainian IT Awards in

category Software Engineering in 2019,
Jury in 2020

● speaker on global conferences, author
of courses

Oleksandr Savchenko
Solutioning Director, Ciklum

55

Agenda

Patterns vs
Anti-Patterns

Common terms and
catalogues

Design by
Committee

Business layer
antipattern

Swiss Army Knife in the
Distributed System

Application layer
antipattern

Operational
Over-Tooling

Technology layer
antipattern

Useful
materials

Bad Data
Virus

Data layer
antipattern

6

Patterns vs
Anti-Patterns

77

What is Architecture?

ISO/IEC/IEEE 42010, Systems and software engineering - Architecture description

Architecture - is a fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution

Architecture

http://www.iso-architecture.org/42010/

properties of a system

environment

http://www.iso-architecture.org/42010/defining-architecture.html

elements and relationships

principles of its design
and evolution

http://www.iso-architecture.org/42010/
http://www.iso-architecture.org/42010/defining-architecture.html

88

Architecture levels (ESA)

Application
Architecture(s)

Solution Architecture

Enterprise Architecture

Application Architecture - focuses on the
design and development of individual
application, specifies the structure,
behavior, and interactions within an
application to meet specific functional
and technical requirements.

Solution Architecture - defines how
specific solution / product or
multiple products meet business
requirements while aligning with IT
standards.

Enterprise Architecture - the highest
level (typically) of description of an
organization and typically covers all
missions and functions.

99

Architecture levels (BDAT concept)

Federal Enterprise Architecture Framework -
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf

Business layer requires aligning technology and architecture
decisions with business objectives and defines the business
processes, strategies, and goals.

Data layer is crucial for managing, storing, and securing data, and
outlines how data flows and is structured across the organization.

En
te

rp
ris

e
ar

ch
ite

ct
ur

es
B

D

A

T

Application layer concerns itself with software systems and their
interactions, high-level application strategy and product
standards.

Technology layer encompasses the underlying infrastructure and
platforms.

https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf

1010

Architecture Methods and Frameworks

Architecture guidelines
(e.g. Microsoft Architecture guide, Azure/GCP/AWS/IBM
Well-Architectured Framework, IBM Architectures, etc.)

Architectural Methods
(SEI ADD, IASA)

Enterprise Architecture Frameworks
(e.g. TOGAF, Federal Enterprise Architecture Framework

(FEAF), NATO Architecture Framework / NAF)

Top-to-Bottom, Bottom-Up
approaches Component-Based Thinking Domain Driven Design

https://www.ibm.com/architectures
https://www.visual-paradigm.com/guide/enterprise-architecture/what-is-nato-architecture-framework/

1111

Simplified Architecture Development process

Collection of information from
stakeholders via different

elicitation methods

Architecturally Significant Requirements

Architectural Views Architectural Decisions

Functional requirements, Constraints, Concerns,
Quality Attribute Scenarios + Risks, Assumptions

1 2

5 64

Architectural methods and tools,
Design Principles,

 Architectural Tactics
3

Implementation plan with
evolutionary approach

1212

Architecture Design Concepts

● Reference Architectures
● Architectural Tactics
● Deployment Patterns
● Standards (e.g. RFC, ISO)
● Tools, Dev Frameworks, Platforms,

Technologies

● Architectural Patterns /
Styles

DESIGN CONCEPTS:

Usually Architectural Design is iterative process where You should use multiple Design Concepts to
speed up process of architecture creation and be aligned with IT standards and best practices.

1313

Enterprise Architecture Patterns and Styles

Business Architecture:
Capability-Based Planning patterns, Customer Journey-Based Architecture, Value Stream Mapping
Pattern, Organization & Role-Based Patterns (Organization Units, Roles, RACI matrices, Enterprise
Operating Models), Business Motivation Model (BMM) Pattern, Business Process-Oriented Patterns,
Policy and Rules-Based Patterns

Data Architecture:
Data Warehouse, Data Lake, ETL/ELT, Change Data Capture, Data Mesh, Data Virtualization, Data
Streaming, Lambda / Kappa Architecture, Big-Data, Centralized vs Distributed Data, Federated Data,
Domain-Oriented Data Ownership, Transactional vs. Analytical, Real-Time vs. Batch Processing

En
te

rp
ris

e
ar

ch
ite

ct
ur

es

B

D

A

T

Application Architecture:
Layered, Hexagonal (Ports and Adapters), Microservices, Monolithic, Modular Monolith,
Service-Based Architecture, SOA, Event-Driven, CQRS, DDD, BFF, API Gateway, Saga, Strangler Fig
Pattern, Serverless, Function as a Service (FaaS), Reactive Architecture, Actor Model,
Micro-Frontend.

Technology Architecture:
N-Tier Architecture, Public / Private Cloud, Hybrid/Multi- Cloud, Edge Computing, Containerization,
Infrastructure as Code (IaC), Service Mesh, Zero Trust Architecture, Platform Engineering,
Observability-Driven Architecture, Resilient Architecture, X-Y-Z scaling and availability cube,
Immutable Infrastructure, Failover Cluster.

1414

Where can you find catalogs?

Azure Architecture Center
Guidance for architecting solutions on Azure using established
patterns and practices

Data Management Design and
Implementation

Messaging

https://patterns.arcitura.com/
https://microservices.io/

This is known for architectural patterns and styles

https://patterns.arcitura.com/
https://martinfowler.com/eaaCatalog
https://www.enterpriseintegrationpatterns.com
https://microservices.io/
http://architecturethehardparts.com/

1515

What is an Anti-Pattern?

“Antipattern is a practice that initially looks like a good idea, but
turns out to be a mistake … and better alternatives exist …”

“Pitfall looks superficially like a good idea but immediately reveals
itself to be a bad path…”

Neal Ford

1616

Book/Catalogs of Anti-Patterns

Architecture
1. Autogenerated Stovepipe

2. Stovepipe Enterprise

3. Jumble

4. Stovepipe System

5. Cover Your Assets

6. Vendor Lock-In

7. Wolf Ticket

8. Architecture By Implication

9. Warm Bodies

10. Design By Committee

11. Swiss Army Knife

12. Reinvent the Wheel

13. The Grand Old Duke of York

“AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis”

http://antipatterns.com/

Publication date: 1998

Development
1. The Blob

2. Continuous Obsolescence

3. Lava Flow

4. Ambiguous Viewpoint

5. Functional Decomposition

6. Poltergeist

7. Boat Anchor

8. Golden Hammer

9. Dead End

10. Spaghetti Code

11. Input Kludge

12. Walking through a Minefield

13. Cut-and-Paste Programming

14. Mushroom Management

Project Management
1. Blowhard Jamboree

2. Analysis Paralysis

3. Viewgraph Engineering

4. Death by Planning

5. Fear of Success

6. Corncob

7. Intellectual Violence

8. Irrational Management

9. Smoke and Mirrors

10. Project MisManagement

11. Throw It over the Wall

12. Fire Drill

13. The Freud

14. E-mail Is Dangerous

41 Antipatterns and Mini-Antipatterns

https://www.amazon.com/exec/obidos/ASIN/0471197130/thean04c-20
https://www.amazon.com/exec/obidos/ASIN/0471197130/thean04c-20
http://antipatterns.com/

1717

Books/Catalogs of Anti-Patterns

Technical Architecture:
1. Antipattern: Last 10% Trap and Low Code/No Code
2. Antipattern: Vendor King
3. Pitfall: Leaky Abstractions
4. Pitfall: Resume-Driven Development

Incremental Change:
1. Antipattern: Inappropriate Governance
2. Pitfall: Lack of Speed to Release

Business Concerns:
1. Pitfall: Product Customization
2. Antipattern: Reporting Atop the System of Record
3. Pitfall: Excessively Long Planning Horizons

1. Data-Driven Migration AntiPattern

2. The Timeout AntiPattern

3. The “I Was Taught to Share” AntiPattern

4. Reach-in Reporting AntiPattern

5. Grains of Sand Pitfall

6. Developer Without a Cause Pitfall

7. Jump on the Bandwagon Pitfall

8. The Static Contract Pitfall

9. Are We There Yet Pitfall

https://www.developertoarchitect.com/downloads/microservices-pitfalls.pdf
https://www.developertoarchitect.com/downloads/microservices-pitfalls.pdf

1818

Catalogs of DevOps Anti-Patterns

Anti-Type A: Dev and Ops Silos
Anti-Type B: DevOps Team Silo
Anti-Type C: Dev Don't Need Ops
Anti-Type D: DevOps as Tools Team
Anti-Type E: Rebranded SysAdmin
Anti-Type F: Ops Embedded in Dev Team
Anti-Type G: Dev and DBA Silos
Anti-Type H: Fake SRE

DevOps Guidance

116 antipattern
overviews
within 26 practices
around 5 categories
(Organizational adoption,
Development lifecycle,
Quality Assurance,
Automated Governance,
Obіervability)

https://web.devopstopologies.com

https://www.amazon.com/Operations-Anti-Patterns-DevOps-Solutions-Jeffery/dp/1617296988
https://www.amazon.com/Operations-Anti-Patterns-DevOps-Solutions-Jeffery/dp/1617296988
https://web.devopstopologies.com/#anti-type-a
https://www.amazon.com/DevOps-Handbook-Second-World-Class-Organizations/dp/B09L56CT6N/
https://www.amazon.com/DevOps-Handbook-Second-World-Class-Organizations/dp/B09L56CT6N/
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/the-devops-sagas.html
https://web.devopstopologies.com/

1919

Agenda for today

Design by Committee – Decisions are made by large, misaligned
stakeholders to bloated, slow-moving architectures that reflect compromise
over clarity, often lacking clear ownership or vision.

Bad Data Virus – Poor-quality or inconsistent legacy data spreads through
systems like a virus, and this data included in analytics, automation, and
downstream services, making recovery increasingly difficult over time.

En
te

rp
ris

e
ar

ch
ite

ct
ur

es
B

D

A

T

Swiss Army Knife – components are over-engineered with too many
features or responsibilities, becoming inflexible, difficult to maintain, and
ultimately failing to serve any one purpose well.

Operational Over-Tooling – The tech stack becomes cluttered with
overlapping tools for monitoring, deployment, and ops, creating complexity,
skill silos, and increased maintenance overhead without proportional benefit.

20

Business
Data
Application
Technology

Antipattern:
Design by Committee

2121

Architecture is not
presented or not
understandable

Re-architecture
during the

development

Overcomplicated
designs and continuous

refactoring

Cost
for maintenance and

extensibility

Slow
delivery and increase

time-to-market

Many people want to
influence the design

No clear
architectural

decision-making process

Long/Hard meetings
with conflicts,

rescheduling, without
outcomes

No consistent vision of
how to measure success

(quantitative metrics)

Hard and long
process for release

preparation

Lack of Observability
after Release

Released not relevant
product, Business
doesn’t meet KPIs

Antipattern: Design by Committee
The main problems we usually face

2222

Antipattern: Design by Committee
Let’s try to solve these problems…

Dedicated
Architect(s)

Potential
Pitfalls / Antipatterns

Architect play Golf

Ivory Tower Architect
Architects design and processes without
sufficient input from developers or operational
teams, leading to impractical or overly complex
architectures.

Architects do not participate in the project after the
architecture phase is done and expect strict
compliance of development with the design

Collective Design

2323

Antipattern: Design by Committee
Let’s try to solve these problems…

Technical / Design
Committee

Choose Architectural Frameworks, Methods

Trade-offsTop-to-Bottom
approach

SEI ADD MS architecture guide

Specify clear Architecture Decision Making process

Hypothesis Driven
(PoC & Prototyping)

1

2

Architect(s), Tech Lead(s),
QA Lead, DevOps Lead,

Delivery Lead, Product Lead

1. Initial Requirements 2. ASRs

Functional requirements,
Constraints, Concerns,
Quality Attribute Scenarios

3. Architectural principles

4. Solutions Options,
Trade-Off

5. ADRs 6. Implementation plan

2424

Antipattern: Design by Committee
Let’s try to solve these problems…

Technical / Design
Committee

Architect(s), Tech Lead(s),
QA Lead, DevOps Lead,

Delivery Lead, Product Lead

Choosed viewpoints: Tools for creation diagrams:

Choose Architectural Viewpoints and Tools3

List of main diagrams:
● System context
● Container
● Detailed Component
● Deployment
● Auth sequence
● Main data flow activity
● Physical ERD
● …

ADR Format (attributes):

Implement ADRs and select reference format4

Example AWS Guide - ADR process

Creation and approvals
Process of ADRs

● Id
● Title
● Status
● Related ADRs
● Group
● Context and Problem Statement
● Considered Options
● Decision

https://docs.aws.amazon.com/prescriptive-guidance/latest/architectural-decision-records/adr-process.html

2525

Antipattern: Design by Committee
… and finally present Architectural methods and provide possibility for contribution

Business Objectives

Design
Committee Regular syncs

uses

Architectural
Decision
Records

Delivery Team(s)
(Devs, QAs, DevSecOps, etc)

PoC and
Prototypes

Architectural
views Product Feature

DeliveryS
of

tw
ar

e
A

rc
hi

te
ct

ur
e

D
oc

um
en

ta
ti

on

Architectural Methods
and Toolset

Architectural
Principles

. . .

Functional Requirements

Constraints Quality Attributes

Concerns

Risks

Assumptions Fitness Functions

specify and
uses

responsible

responsiblecontributes

uses

responsible
and

contributes

2626

Measurable Metrics to support in identification of this anti-pattern

Antipattern: Design by Committee

Collaboration
Duration of Meetings,

Number of Decision-Makers Involved,

Time to Decision (from Idea to Decision),

Team Satisfaction NPS (Net Promoter
Score) by Survey

Complexity and Debt
Code Complexity Metrics,

Total technical debt (in person-hours or
cost) / Total development effort,

Number of defects per KLOC (thousands
of lines of code),

Integration Failure Rate

Cost and Productivity
Refactoring effort,

Percentage of budget allocated to rework vs original design,

Ratio of productive time to total time (including meetings and
rework),

Spikes vs Features per Sprint

Design Consistency
Current vs Target Architecture (# of
components/modules per complexity),

of redundant components or services that
provide overlapping functionality,

Architecture Document Change Frequency

Project Delay and Timelines
Number of design changes per sprint or milestone or release
(e.g. use Jira Labels to mark),

Schedule Variance - Actual vs Planned Timelines,

Feature Lead Time (feature from concept to production),

Team Velocity, Release Burndown Rate

2727

Antipattern: Design by Committee

1. Allocate Architect: Ensure a strong leader is responsible for the final decisions.

2. Create Technical / Design Committee with minimum final Decision-Makers: Implement decision-making frameworks that
streamline the process, such as the RACI to clarify clear roles and responsibilities.

3. Unify Framework for Analyses Requirements: Create a clear flow on how to identify ASRs (business objectives, constraints. concerns,
quality attributes, …) for all working item (big PI and release, Feature, User Story)

4. Implement Fitness Functions: Regularly measure the architecture's alignment with its intended design principles using fitness functions.
Automate these checks where possible to receive continuous feedback.

5. Specify Architectural Principles: Stick to core design principles and avoid making changes that deviate from the established goals and
guidelines.

6. Use Architecture Decision Records (ADRs): Document every major architectural decision, including the rationale, alternatives
considered, and the final decision. This transparency reduces redundant discussions and ensures alignment.

7. Promote a Unified Vision: Ensure that all stakeholders understand and buy into a clear architectural vision and set of principles. Workshops,
shared documentation, and collaborative sessions can help align the team.

8. Conduct Regular Architectural Reviews: Perform regular reviews focused on alignment, consistency, and adherence to the architectural
vision. Use metrics and fitness functions to guide these reviews.

9. Prioritize Feedbacks: Gather input from all stakeholders, but prioritize and implement feedback that aligns with the project’s vision and goals.

How to mitigate or fix this

1

2

3

4

5

6

7

8

9

28

Business
Data
Application
Technology

Antipattern:
Bad Data Virus

2929

Antipattern: Bad Data Virus
Main problem: Growth of Data

Forecast: 175 ZB will be created by 2025
https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/

~2.8 zettabytes per week
~12 zettabytes per month
~147 zettabytes per year

According to the latest
estimates -
402.45 million terabytes of
data are created each day

https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/

3030

Antipattern: Bad Data Virus
Interesting point that most of data is Dark Data

“Dark Data is information assets organisations collect,
process and store during regular business activities,
but generally fail to use for other purposes.”

Gartner, Inc.

Report by VERITAS

It means “collected, but not used”

to explain 3 types of data:
Business critical data
Rot data
Dark data

https://www.veritas.com/content/dam/Veritas/docs/reports/veritas-strike-global-report_a4-sdc2.pdf
https://www.veritas.com/content/dam/Veritas/docs/reports/veritas-strike-global-report_a4-sdc2.pdf

3131

Antipattern: Bad Data Virus
So let's see what we have in terms of the product

Fear

Of

Deleting

Data

Bad
Data

Golden Source

Data ingestion
Tool

Bad
Data

Bad
Data

Replica

Bad
Data

Bad
Data

Data
Lake

Vector
Embeddings

Bad
Data

Bad
Data

Bad
Data

Bad
Data

Bad
Data

High
Availability

3232

Measurable Metrics to support in identification of this anti-pattern

Antipattern: Bad Data Virus

6. Observability
and Monitoring

1. Data Usage

Data Access Frequency,
Data Read/Write Ratio,
Query Patterns and Complexity,
Data Retrieval Latency,
Data Deletion and Purging Rate,
User Query and Access Logs,
User Feedback and Usage Surveys

2. Data Storage

Data Volume and Growth Rate,

Storage Utilization Rate,

Data Redundancy Ratio,

Archival vs. Active Data Ratio,

Data Age Distribution,

Data Lifecycle Stages

3. Data Quality

Data Completeness - assesses whether all
required data elements are present,

Data Accuracy - how well the data reflects
real-world values or facts,

Data Freshness and Staleness - how
up-to-date data is,

4. Data Governance
and Compliance

Data Retention metrics,

Access Control and Data Sensitivity,

Compliance Audit Results

5. Performance
and Efficiency

Cache Hit/Miss Ratio,

System Resource Utilization for Data Operations,

Data Transfer Volume and Bandwidth Usage

Data Pipeline Metrics - health and efficiency of
data pipelines,

Log Data Utilization - unused log data is a
common form of dark data,

Anomaly Detection in Data Usage patterns -
identifies unusual patterns in data usage

3333

Antipattern: Bad Data Virus
How to mitigate or fix this

Conduct a Data Audit Implement a data
classification approach

Clear Data Governance Strategy

Develop a data retention /
archiving / deletion policies

Automate data
management processes

1 2

3 4

34

Business
Data
Application
Technology

Antipattern:
Swiss Army Knife

3535

Antipattern: Swiss Army Knife in distributed systems
“Swiss Army Knife” is a classical Anti-Pattern in the Software Development

is a tool with so many features

A Swiss Army Knife, is an excessively complex
class, interface.

Architect attempts to provide for all possible uses
of the class and class may include from dozens to
thousands of method signatures for a single class.

3636

Antipattern: Swiss Army Knife in distributed systems
Let’s back to 2000 … 2010 …

App Module

Core Team

Data Base
(triggers, procedures, views, …)

App Module App Module

App ModuleApp Module

3737

Monolith

DB

Macro
Service

Shared DB

Macro
Service

Micro
Service

Micro
Service

DB DB

initial state iterative process

Antipattern: Swiss Army Knife in distributed systems
... in 2010+ we had a classical case “migration to services architecture”

3838

Service

Service

Service

Service

Messaging
System

Service
Direct

connection

Direct
connection

1. Adding Messaging
system for service
communication

3. Decoupling
Business Logic from
Services

2. Orchestration or
Choreography
dilemma

4. Add more
responsibility to
messaging system
(aka ESB)

5. Dedicated
Team to support

Antipattern: Swiss Army Knife in distributed systems
Classical situation - migration to services architecture

3939

Antipattern: Swiss Army Knife in distributed systems
Classical situation - migration to services architecture

Service

Service
Service

Service

Messaging
System

Service

1. Adding Messaging
system for service
communication

3. Decoupling
Business Logic from
Services

2. Orchestration or
Choreography
dilemma

Direct
connection

4. Add more
responsibility to
messaging system
(aka ESB)

Direct
connection

Messaging
System

Messaging, Service Binding, Security, Failover,
Protocol Switching, Load Balancing,
Management, Monitoring, Routing,

Transformation

Service

Service

Service

Service

5. Dedicated
Team to support

Core Team

4040

Antipattern: Swiss Army Knife in distributed systems
Main symptoms

● Overloaded Messaging System: doing too much - handling everything from routing to orchestration to
business logic.

● Performance Bottlenecks: The ESB may become a performance bottleneck if it’s not properly scaled,
impacting the overall responsiveness.

● Difficulty in Making Changes: Difficulty in making changes or upgrades to the messaging system
without affecting multiple services.

● Difficulty in Debugging and Monitoring: Complex message flows make it difficult to trace, debug, and
monitor across services.

● Hidden Business Logic: Core business logic is hidden inside message routing or processing rules,
making it hard to understand system behavior.

● Tight Coupling via Message Context: services depend on specific message formats, leading to tight
coupling and cascading changes.

https://developer.ibm.com/articles/cl-lightweight-integration-1/

https://developer.ibm.com/articles/cl-lightweight-integration-1/

4141

Measurable Metrics to support in identification of anti-pattern

Antipattern: Swiss Army Knife in distributed systems

CPU and Memory Usage,
Throughput (Messages per Second),
Latency per Message Processing

2. Number of Message Types and
Transformations

Total # of Message Types,
Number of Transformations per Message

of Services dependent on Specific Message Types,
Changes in Upstream Services Affecting Downstream
Services

4. Failure
Propagation

Impact Radius of Messaging System Failures,
Mean Time to Detect (MTTD) and Mean Time to
Recover (MTTR) from Message Failures

5. Monitoring and Debugging

Time to Trace a Transaction Across Services,
Percentage of Messages with Complete Tracing
and Logging Information

6. Business Logic in Messaging
Layer

Percentage of Business Logic Implemented in the
Messaging Layer

1. Messaging System
Utilization

3. Services
Coupling

4242

Antipattern: Swiss Army Knife in distributed systems
How to mitigate or fix this

1. Refactor to simplify the Messaging System:
○ Review and remove complex processing rules, scripts, or logic embedded in the messaging system.
○ Use lightweight message systems (e.g., Apache Kafka, RabbitMQ) without complex processing.
○ For cases requiring more advanced orchestration, consider dedicated workflow engines (e.g., Apache Airflow, Cadence, or Camunda) instead of the message broker.

1. Simplify Message Types and Minimize Transformations - each message should have a clear purpose and format
○ Audit current message types and transformations to identify and remove unnecessary ones.
○ Use simpler, more generic message formats that contain only essential information, avoiding excessive nesting or deep hierarchies.
○ Minimize the need for data transformation by standardizing communication formats (e.g., JSON, Avro, Protocol Buffers).

1. Establish clear Messaging Protocols and Contracts:
○ Use schema registries (e.g., Confluent Schema Registry) or API specifications (e.g., OpenAPI, AsyncAPI) to define and enforce message formats.
○ Implement consumer-driven contract testing (e.g., Pact) to ensure that changes in message formats do not break downstream consumers.
○ Version messages and provide backward compatibility for updates to ensure that changes do not disrupt the entire system.

1. Decentralize Business Logic to Microservices:
○ Identify business logic currently executed in the messaging layer. Refactor these operations into stateless or stateful microservices where they naturally belong.
○ Ensure that microservices expose clear APIs and endpoints for business operations, rather than relying on message-driven choreography.
○ Use asynchronous messaging for triggering actions without embedding complex business rules in message flows.

1. Adopt a "Smart Endpoints, Dumb Pipes" Strategy (decision-making within services themselves)

1. Improve Observability and Monitoring of Messaging Flows (e.g. distributed tracing)

1. Implement Domain-Driven Design (DDD) Principles (e.g. domain events for communication between services)

1. Conduct Regular Architecture Reviews and Refactoring

1

2

3

4

5

6

7

8

43

Business
Data
Application
Technology

Antipattern:
Operational
Over-Tooling

4444

Antipattern: Operational Over-Tooling
Main problem: Automatisation as much as possible

Team 1

Team 2

Team 3

Team 4

Team 5

Team . . .

4545

Antipattern: Operational Over-Tooling
Main problem: Trying to implement NoOps

DevOps

NoOps
ITOps AIOps…

Benefits:
Maximized Development Time
No Manual intervention
Full Cloud Capacity

Challenges:
Increased Workload
Decreased Security (potentially)
Lack of Compatibility

Pitfall
"NoOps Mirage"

Underestimation of the
complexities involved in fully
automating operations, that’s
why we have:

● again manual
interventions

● maintainability cost
increase

● Incidents increase

Fear
Of

Manual
Intervention

4646

Antipattern: Over-Tooling Overload
So engineers start searching more tools…

https://digital.ai/learn/devsecops-periodic-table/

https://digital.ai/learn/devsecops-periodic-table/

4747

Antipattern: Over-Tooling Overload
… and more ….

https://landscape.cncf.io

https://landscape.cncf.io

4848

Antipattern: Operational Over-Tooling
And implementation more tools can generate more problems (pitfalls and antipatterns)

Pipelines/builds, Artefacts, Log files, Customer information, Geolocation data,
Raw survey data, Financial statements, Emails, Old documents/notes and
other files

Pitfall 3: “Data Explosion through automation”

Antipattern 2: “DevOps is only
automation”

Antipattern 1: “Focus on Tools but not people”

DevOps culture implementation focus on
tooling without addressing the importance of
having their teams be in the flow and happy.

You need to step back at first, and make sure you
understand all the processes inside the team/company, so
you are sure on what you will be automating and what
challenges you will be dealing with. Automation

D
at

a
R

eq
ui

re
m

en
ts

MBs

GBs

TBs

4949

Antipattern: Operational Over-Tooling
Measurable Metrics to support in identification of anti-pattern

Tool
Utilization

Obsolete Tool Count,

Tool Usage Frequency,

% of a tool’s features that are actively
used,

% of team members actively using
each tool

Integration and
Maintenance

Integration Time and Effort,

Tool Downtime/Failure Rate,

Time spent managing dependencies and
ensuring tool compatibility,

Tool Update Frequency and Update Time,

User Satisfaction and Usability Score,

Support Ticket Volume - # of internal support
tickets or help requests related to tool usage
or issues

Cost and
Resource

Tool Licensing Costs,

Training and Support Costs,

Resource Utilization - cost and % of
system resources consumed by tool
agents, services, or background
processes

5050

Antipattern: Operational Over-Tooling
How to mitigate or fix this

1. Conduct a Tools Audit and Document (SBOM) each tools purpose, usage frequency, value provided to team.

2. Implement Governance for Tool Management:

○ Introduce a governance policy to periodically review the toolset and ensure it aligns with current team needs.

○ Create a DevOps Tooling Committee responsible for approving new tools, reviewing existing ones, and
managing integrations.

3. Define a Tool Adoption Strategy (clear criteria for adopting new tools).

4. Consolidate Tools (standardize to single or minimum number of tools for each category).

5. Automate Integration and Maintenance Tasks (reduce manual effort of setting up tools).

6. Continuous Monitor and Measure tools usage and team productivity.

7. Improve Documentation and Knowledge Sharing.

8. Train and Onboard new team members effectively.

1

2

3

4

5

6

7

8

51

What’s next . . .

5252

What do you need to do?

What and how should I measure to
determine if an antipattern is
present in my environment?

What are antipatterns and
pitfalls?

What should I do, if it exists, to fix the situation?

Metrics and Observability
strategy

Antipatterns and Pitfalls
catalogues

Actions Plan

5353

Any questions?

54

Share your
feedback!

55

Product
Engineering
From custom platform and
product development to
scaled agile delivery, we join
forces to build advanced
technology solutions

Join our team

Oleksandr Savchenko
LinkedIn:
https://www.linkedin.com/in/o-savchenko/

https://www.linkedin.com/in/o-savchenko/

