
1

Place for photo

September 2025

2

Experiences of tomorrow.
Engineered together.
We transform how people experience the
business. All through next generation technology.

2002
founded

4000+
professionals

300+
clients

20+
offices

What we do:

Leading companies choose us:

Product
Engineering

Intelligent
Automation

Data &
Analytics

3

Max Pavlov
AI Engineering Director

● In Software Engineering since 2003

● Former Head of .NET in Ciklum

● Lead 120+ FTE teams

● Former Engineering Director (NewSignature) and Solution Architect
(Novax, Deloitte)

● Starting 2021 worked as Global Solutioning Director

● Currently part of AI R&D Developing next generation of Ciklum
offerings and product in AI

Speaker

44

Agenda

01
02
03
04

AI Agents - definition

ReAct paradigm

Build from scratch vs off-the-shelf
alternatives

Environments: ollama vs llama_cpp

05
06
07

Coding iterative agent

Advancing agent: styling

Advancing agent:
context counting and compacting

5

AI Agents - definition

What is an AI Agent?

Autonomous system that perceives, reasons, acts, and learns to
achieve goals.

Key characteristics

● Access to tools (e.g., terminal commands).
● Iterative problem-solving (loop until resolved).
● Powered by LLMs for decision-making.

LangGraph, for instance, define tool calling, memory and planning as key characteristics of
flexible agents

Why Iterative?

Real-world tasks often need multiple steps; agents "think" and "act" in
loops.

6

The ReAct Framework

What is Re-Act?

Reasoning + Acting—a simple pattern for agents to alternate
between thinking and tool use.

How it Works:

● Reason: LLM thinks step-by-step about the query.
● Act: Decide on an action (e.g., tool call like "ls -l").
● Observe: Execute action, feed result back to LLM.
● Repeat until final answer.

Benefits:

Transparent (due to agent's thought process), flexible, powerful..

QEERY
“What’s in/home?”

THOUGHT
“I need to list directory
contents”

ACTION
Run “Is - I /home”

OBSERVATION
[Command output]

7

Build from scratch vs off-the-shelf
alternatives

Why build from scratch?

Better for learning. No core implementation hidden behind library facade.

Alternatives

● CrewAI agents

● LangGraph agents

What would I use in production?

Deeper analysis needed. For value focused implementations LangGraph offers
good out-of-the-box value.

If agent is the core product - probably build from scratch to maintain full control

8

Environment setup

Where to get LLM for thinking?

Core thinking abilities of agents come from an underlying model. LLMs or SLMs are at core of any agent,
although logical orchestration is also important

When choosing a model

● Focus on models trained for tool calling

● Models have their own tool calling notation but even with custom prompt - these are better at identifying
the need for tool calling

● Models with 8B+ params show incredible tool calling abilities

Application stack?

One needs to maintain the balance between control, performance and ease of use of an LM inference. You
don’t want to bring in own MLOps pipeline, neither you want to only get one LLM API. Ollama is good for
demo purposes. LLama.cpp is performant and format-agnostic enough to be the local inference go-to engine
even in production

Coding a simple agent
DEMO 01

Styling agent output
DEMO 02

Thinking about context
utilization and compacting

DEMO 03

12

Q&A

13

Share your
feedback!

14

Product
Engineering
From custom platform and
product development to
scaled agile delivery, we join
forces to build advanced
technology solutions

Join our team

